

South Africa Country Level Policy Outputs

Presented by Sue Walker

Claire Quinn, Marcelin Tonye Mahop & Helen Coskeran University of Leeds Helen Harwatt & Maliha Muzammil, Chatham House

Policy Output Process

- Scenario workshops 2018
 - Participatory scenario development
- Integration of modelling & expert knowledge

Calibrated and implication statements

➤Scenario summaries

Country summaries

- Emerging commonalities and cross-cutting policy topics
- Policy workshop November 2021

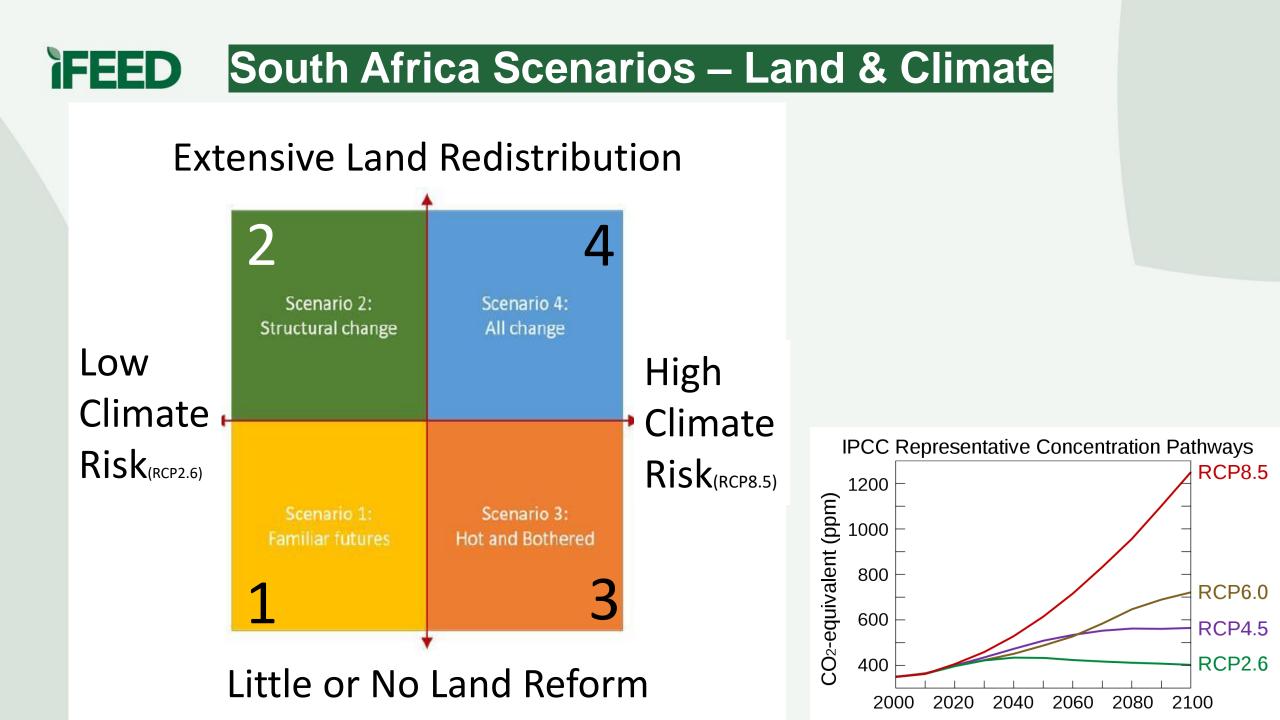
≻project wide – Malawi, Tanzania, Zambia≻Hybrid mode

• South African National Dialogue – February 2022

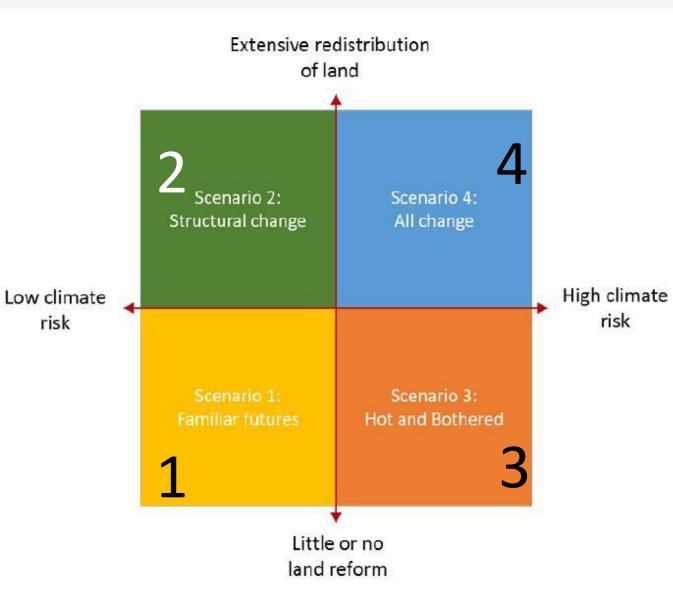
South Africa

Policy Outputs Overview

FEED Key Messages for South Africa


iFEED focusses at the national level on:

- Changes to nutrition security and climate-smart agriculture.
- Analysis includes 2050 projections of:
 - > National food production, nutrition security and emissions
 - for four contrasting scenarios,
 - with implications for national food system policy processes.
- Four future scenarios for South Africa, derived from a participatory stakeholder workshop, were characterised by two critical uncertainties –
 - the magnitude of climate risks (low = RCP2.6; high = RCP8.5)


 \succ extent of land reform (low = LT = little; high = HT = extensive).

 Subnational simulations of future climate, crops & emissions underpin projected changes at national level.

FEED South Africa Scenarios

1: Familiar futures scenario is characterised by low climate risk (RCP2.6) & insignificant land reform (LT). This future assumes little change to arable crop areas, but increased livestock pasture & crop diversification.

2: Structural change scenario is characterised by low climate risk (RCP2.6) & significant land reform (HT). This future assumes crop diversification, a fall in arable crop areas & increase in livestock pasture areas.

3: Hot and bothered scenario is characterised by high climate risk (RCP8.5) & insignificant land reform (LT). This future assumes crop diversification, an increase in arable crop areas & irrigation expansion, & decrease in livestock pasture areas.

4: All change scenario is characterised by high climate risk (RCP8.5) & significant land reform (HT). This future assumes crop diversification, a fall in agricultural area & irrigation expansion.

FEED Modelling Results for South Africa

- 1. Extreme conditions likely to increase for ALL scenarios,
 - => relatively bad years of domestic food production more likely.
- 2. Food production: from 2x to more than 2x from 2000 baseline,
 - with increase up to 178% RCP8.5, Low land reform LT for crops
 - depending largely on climate scenario.
 - Maize remains main crop in ALL scenarios, crop diversity increases 10% low climate risk to 25% in the high risk scenarios.
- 3. Low climate risk scenarios pasture areas increase.
- 4. High Climate Risk & Low Land Reform Scenario (3) cropland increases & increased land conflicts & ecosystem degradation.
 - **High Climate Risk & High Land Reform (4)** Decreased crop(10%) & pasture(15%) leading to expected improvements in ecosystem services.

FEED Modelling Results for South Africa

5. Crop yields increase on average >> 50% from for ALL scenarios

Climate change - **small negative impact on maize, soybean & potato yields** of 4% (RCP2.6) to 14% (RCP8.5), even with incremental adaptation.

6. Nutrient Supply improves Across ALL 4 scenarios, on a per capita basis, despite a projected population increase of 68%.

- Climate risk impact on nutrition security >> Land Reform (better outcomes under RCP8.5 than RCP2.6).
- IF trade is re-orientated to optimise nutrition security, under ALL scenarios domestic produced calories & exported without compromising essential micronutrient supplies for domestic consumption.

7. Net emissions (GHG & SOC changes) increase in ALL scenarios,

from 57% to 60% in low climate risk scenarios (RCP2.6),

from 128% to 150% in high climate risk scenarios (RCP8.5).

South Africa Country – Key Messages

Food Production, Land Use and Irrigation:

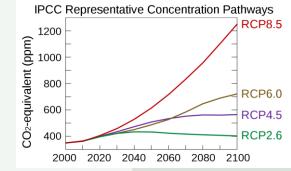
Scenario 2: Structural change Low climate risk Scenario 1: Familiar futures Little or no land reform

Extensive redistribution

- Crop yields increase on average by 50%+ for ALL scenarios.
- Maize remains main crop but crop diversity increases.
- With high land reform, food production increases substantially (crop & livestock) but
 - Under low climate risk, increases potential for land (& water) conflict (2);
 - Under high climate risk, crop and pasture areas decline could improve environmental sustainability (4).
- With **low land reform**, food production increases (crop & livestock)
 - Under low climate risk, adaptive measures & expansion irrigation & increases conflict
 - Under high climate risk, technology innovations improve crop yields & pasture areas (3)

`FEED

South Africa Country – Key Messages-2


Trade and Nutrition Security = good news

- Nutrient supply generally improves across ALL scenarios by 2050;
 - Calcium & Iron remain inadequate.
- Climate has more significant impact that land reform.
- If nutrition security optimised through trade, significant amount of calories are exported, without compromising domestic consumption.
- Low import dependence for nutrition security in all scenarios, & potential to re-orientate domestic agriculture to better reflect domestic nutritional requirements.
- Increased food production & crop diversity, an increased availability of nutritionallydiverse food crops, lower food prices and increased livelihood resilience might be expected across all four scenarios.

ifeed

South Africa Country – Key Messages-3

Climate extremes:

- Extreme conditions likely to increase across all scenarios including more drought and shortening of rainy season across South Africa.
- Relatively bad years in terms of domestic food production **more likely.** For Temperatures:
- In low climate risk scenarios, average temperatures warm by roughly 1°C by 2050.
 Extremely hot days increase by an average of roughly 1-3 days per month (esp January).
- In high climate risk scenarios, average temperatures warm by roughly 2.5°C by 2050. Extremely hot days increase by an average of roughly 4-6 days per month (esp January).
 For Rainfall:
- Increased number of months experiencing drought conditions.
- General shortening of rainy season across South Africa.
- **Reduced average rainfall amount** during the wet months of October-April.

Climate Smartness

- Net emissions increase in ALL scenarios & non-CO₂ greenhouse gases increase by 50%.
- Soil Organic Carbon losses in ALL scenarios while emissions intensity declines in 3 of 4. Climate-smart agriculture impacts are mixed across ALL scenarios,
- Productivity increases thro intensification of production system are accompanied by emissions increases and soil organic carbon decreases.
- Net production emissions range from 57-60% in low climate risk scenarios to 128-150% in high climate risk scenarios.
- Non-CO2 GHGs increase across ALL scenarios by around 50%.
- All scenarios, SDGs 2, 3, 13 are likely to be achieved by the production system but there may be negative impacts on SDG6 and SDG12 (due to higher irrigation).

South Africa: Policy Messages - 1

 All scenarios require additional policy considerations to minimise impacts of increased food production on ecosystem degradation & biodiversity loss, and limit conflict over land and water use.

South Africa: Policy Messages - 2

- Crop diversification & irrigation needed to increase productivity & deal with increasing climate extremes
- Land reform requires modified policy response: e.g. under significant reform, government support will be needed for successful uptake of new agricultural technologies in newly created medium-sized land reform farms. Under insignificant reform, increased land conflicts will require management interventions.

ifeed

Cross-cutting Policy Topics with other SADC countries

FEED Priority Policy Topic Areas across 4 Countries

	Zambia	Tanzania	Malawi	South Africa
Diversification	Χ			
Commercialisation	Χ	Χ		X
Irrigation	X			
Malnutrition/food security	Χ	Х	Χ	
Productivity and Resilience		Х		Х
Technology		Х		
Implementation barriers			Χ	
Climate risks			Χ	X
Livestock			X	
Land Use and Reform			Х	Х

- Agricultural resilience under climate risks
- Agricultural commercialisation under climate risk
- Nutrition and food security under climate risks
- Land use change and reform under climate risks

FEED Summary Implications for South Africa

- Government support necessary for successful uptake of new agricultural technologies in newly created medium-sized land reform farms.
 Without government support: productivity declines on land reform farms.
- Low climate risk scenarios: likely no significant change to pest & disease impacts UNLESS trade increases or with land reform increase homogeneous agricultural systems=> likely increased pest & disease pressures (RCP2.6, high land reform).
- High climate risk scenarios: **pest & disease impacts likely to worsen** due to climate change (potentially 13% crop yield loss), possible increase reliance on pesticides, & decline in environmental sustainability.
- Increased food production & crop diversity & increase availability of nutritionally-diverse food crops => lower food prices & increased livelihood resilience across all 4 scenarios – improving food security outcomes.
- All scenarios need careful policy considerations to minimise impacts on ecosystem degradation and biodiversity loss, & limit land & water use conflict.

